Search results for "Radiative transfer"

showing 10 items of 551 documents

An Analytic Approach to the Modeling of Multijunction Solar Cells

2020

Analytic expressions for the $JV$ -characteristics of three types of multijunction configurations are derived. From these, expressions for the short-circuit current, open-circuit voltage, and voltage at the maximum power point are found for multiterminal devices, and for series-connected tandem stacks. For voltage-matched devices, expressions for the optimal ratio of the number of bottom cells to the number of top cells are established. Luminescent coupling is incorporated throughout the article. It should be highlighted that the maximum power point of a series-connected tandem stack is described, with good accuracy for all interesting band gap combinations, by a single analytic expression.…

010302 applied physicsPhysicsCouplingMaximum power principleTandem02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsTopology01 natural sciencesElectronic Optical and Magnetic MaterialsStack (abstract data type)0103 physical sciencesLimit (music)Radiative transferEnergy transformationElectrical and Electronic Engineering0210 nano-technologyVoltageIEEE Journal of Photovoltaics
researchProduct

Effect of molecular Stokes shift on polariton dynamics

2021

When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …

010304 chemical physicsScatteringRelaxation (NMR)Physics::OpticsGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciencesMolecular physics0104 chemical sciencessymbols.namesakeMolecular dynamicsMolecular vibrationStokes shift0103 physical sciencesPolaritonsymbolsRadiative transferPhysical and Theoretical ChemistryExcitationThe Journal of Chemical Physics
researchProduct

A Global Sensitivity Analysis Toolbox to Quantify Drivers of Vegetation Radiative Transfer Models

2017

Abstract Global sensitivity analysis (GSA) enables to gain insight into the functioning of radiative transfer models (RTMs) by identifying the driving input variables of RTM spectral outputs such as reflectance, fluorescence, or radiance. This contribution introduces automated radiative transfer models operator's (ARTMO’s) new GSA toolbox. With the GSA toolbox the majority of ARTMO’s available RTMs can be decomposed into its driving variables. For a selected RTM output, a GSA identifies the most influential and noninfluential input variables according to Sobol' first-order and total-order indices. The toolbox can process RTM spectral outputs for any kind of optical sensor setting within the…

010504 meteorology & atmospheric sciences0211 other engineering and technologiesProcess (computing)Sobol sequence02 engineering and technology01 natural sciencesToolboxOperator (computer programming)GeographyRadiative transferRadianceRange (statistics)Sensitivity (control systems)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Two-year global simulation of L-band brightness temperatures over land

2003

International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…

010504 meteorology & atmospheric sciences0211 other engineering and technologiesmodeling02 engineering and technologyLand coverVegetation[INFO.INFO-IA]Computer Science [cs]/Computer Aided EngineeringSnow01 natural sciencesPhysics::GeophysicsBrightness temperatureglobal scaleSoil waterRadiative transferGeneral Earth and Planetary SciencesEnvironmental scienceRadiometryL-band radiometryElectrical and Electronic Engineeringsoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Spectroscopic tools for remote sensing of greenhouse gases CH4, CF4 and SF6

2003

International audience; Highly symmetrical molecules such as CH4, CF4 or SF6 are known to be atmospheric pollutants and greenhouse gases. High-resolution spectroscopy in the infrared is particularly suitable for the monitoring of gas concentration and radiative transfers in the earth's atmosphere. This technique requires extensive theoretical studies for the modeling of the spectra of such molecules (positions, intensities and shapes of absorption lines). Here, we have developed powerful tools for the analysis and the simulation of absorption spectra of highly symmetrical molecules. These tools have been implemented in the spherical top data system (STDS) and highly-spherical top data syste…

010504 meteorology & atmospheric sciencesAbsorption spectroscopy[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Infrared01 natural sciencesSpectral lineAtmosphereSoftware[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesRadiative transferEnvironmental ChemistryClimate changeSpectroscopy0105 earth and related environmental sciencesRemote sensingCH4010304 chemical physicsbusiness.industryChemistryCF4Molecular spectroscopyGreenhouse gases13. Climate actionGreenhouse gasbusinessSimulationSF6
researchProduct

Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

2020

Abstract This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological–Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key par…

010504 meteorology & atmospheric sciencesAdvanced very-high-resolution radiometerImage and Video Processing (eess.IV)0211 other engineering and technologies02 engineering and technologyVegetationElectrical Engineering and Systems Science - Image and Video Processing01 natural sciencesAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionKrigingFOS: Electrical engineering electronic engineering information engineeringRadiative transferRange (statistics)Environmental scienceSatelliteSensitivity (control systems)Computers in Earth SciencesLeaf area indexEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Joint Gaussian processes for inverse modeling

2017

Solving inverse problems is central in geosciences and remote sensing. Very often a mechanistic physical model of the system exists that solves the forward problem. Inverting the implied radiative transfer model (RTM) equations numerically implies, however, challenging and computationally demanding problems. Statistical models tackle the inverse problem and predict the biophysical parameter of interest from radiance data, exploiting either in situ data or simulated data from an RTM. We introduce a novel nonlinear and nonparametric statistical inversion model which incorporates both real observations and RTM-simulated data. The proposed Joint Gaussian Process (JGP) provides a solid framework…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesNonparametric statisticsInverseInversion (meteorology)Statistical model02 engineering and technologyInverse problem01 natural sciencesData modelingNonlinear systemsymbols.namesakeAtmospheric radiative transfer codesRadiancesymbolsGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Automatic emulator and optimized look-up table generation for radiative transfer models

2017

This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)0211 other engineering and technologiesAtmospheric correctionSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeKernel (statistics)Lookup tableRadiative transfersymbolsGaussian process emulatorGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpolation2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Multioutput Automatic Emulator for Radiative Transfer Models

2018

This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)Bayesian optimizationSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeSampling (signal processing)0202 electrical engineering electronic engineering information engineeringsymbolsRadiative transfer020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm0105 earth and related environmental sciencesInterpolationIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …

2011

International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…

010504 meteorology & atmospheric sciencesComputer scienceGaussian0211 other engineering and technologiesSoil ScienceCANOPY BIOPHYSICAL CHARACTERISTICS02 engineering and technologyNEURAL NETWORK01 natural sciencesTransfer functionsymbols.namesakeAtmospheric radiative transfer codesRadiative transferRange (statistics)Sensitivity (control systems)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingArtificial neural networkGeologySigmoid functionRELATION SOL-PLANTE-ATMOSPHEREMODEL INVERSION[SDE]Environmental SciencessymbolsINDICE FOLIAIRE
researchProduct